
The Web’s Security Model
Philippe De Ryck – iMinds-DistriNet, KU Leuven
philippe.deryck@cs.kuleuven.be

About Me – Philippe De Ryck

2

§  Postdoctoral Researcher @ DistriNet (KU Leuven)
§  Focus on (client-side) Web security

§  Responsible for the Web Security training program
§  Dissemination of knowledge and research results
§  Target audiences include industry and researchers

§  Main author of the Primer on Client-Side Web Security
§  7 attacker models, broken down in 10 capabilities
§  13 attacks and their countermeasures
§  Overview of security best practices

Introducing example.com

3

Public Information

Account Management

Private Customer Area

Public Forum Location Information

Analytics
Twitter Integration

Deploying example.com

4

Backend Browser

Deploying example.com in the Web

5

It can’t be that simple, right?

Deploying example.com

6

Backend Browser

Origin-based Isolation

7

Backend Browser

Integration of Third-party Components

8

Backend Browser

Remote Inclusion of Third-party Scripts

9

Backend Browser

Compromise of Third-party Providers

10

Large-scale Study of Remote JS Inclusions

11

“88.45% of the Alexa top 10,000 web
sites included at least one remote

JavaScript library”

Large-scale Study of Remote JS Inclusions

12

Remote Inclusion of Third-party Scripts

13

Backend Browser

Mixed Content Inclusions

14

Backend Browser

Large-scale Study of Mixed Content

15

14% exposed to request
forgery and cookie stealing

2% exposed to
DOM data leakage

27% exposed to
JavaScript execution

57% of HTTPS sites have
no mixed content inclusions

“43% of 18,526 HTTPS sites in the
Alexa top 100,000 has at least one

mixed content inclusion”

Mixed Content Inclusions

16

Backend Browser

Violating Context Isolation

17

Backend Browser

example.com Revisited

18

Backend Browser

Challenges for this Session
§  Compartmentalization using origins

§  Leverage the same-origin policy to isolate sensitive parts
§  Sharing information and authentication

§  Share authentication information between contexts
§  Interact and exchange information between contexts

§  Managing third-party code inclusion
§  Managing the risk associated with potentially untrusted code
§  Preventing mixed-content warnings

§  Communication with the backend
§  Enable legitimate communication from HTML and JavaScript
§  Mitigate illegitimate requests from untrusted contexts

19

Compartmentalization
§  Separation based on origin

§  Naturally enforced by the Same-Origin Policy
§  Allows you to separate sensitive parts and non-sensitive parts
§  Prevents unintended sharing of information
§  Prevents escalation of successful attack

20

SAME-ORIGIN POLICY
Content retrieved from one
origin can freely interact with
other content from that origin,
but interactions with content
from other origins are restricted

ORIGIN
The triple <scheme, host, port>
derived from the document’s URL.
For http://example.org/forum/, the
origin is <http, example.org, 80>

Examples of the Same-Origin Policy

21

SAME-ORIGIN POLICY
Content retrieved from one
origin can freely interact with
other content from that origin,
but interactions with content
from other origins are restricted

http://example.com

http://example.com
http://example.com

http://private.example.com

http://forum.example.com

http://private.example.com

Domains vs Subdomains

22

§  Subdomains
§  E.g. private.example.com vs forum.example.com
§  Considered different origin
§  Possibility to relax the origin to example.com using document.domain
§  Possibility to use cookies on example.com

§  Completely separate domains
§  E.g. private.example.com vs exampleforum.com
§  Considered different origin, without possibility of relaxation
§  No possibility of shared cookies

Subdomains and Domain Relaxation

23

www.example.com

private.example.com

forum.example.com

account.example.com

Subdomains and Domain Relaxation

24

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

Subdomains and Domain Relaxation

25

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

Compartmentalizing example.com

26

Public
Information

Account
Management

Private
Customer

Public
Forum

Sensitive Content

Needs cooperation
Origin

Deploy over HTTPS
Requires authentication

no yes yes no
no yes yes yes

preferable yes yes yes
no account private no

http://www.example.com

https://private.example.com

https://account.example.com

https://exampleforum.com

Compartmentalizing example.com

27

Backend Browser

Authentication on the Web

28

§  Typical authentication consists of two steps

§  Entity authentication
§  Maintaining the session associated with the authenticated user

§  Entity authentication
§  Exchanging username and password
§  Challenge/response systems are also used

§  Session management
§  De facto standard is cookie-based session management
§  Cookie contains unique identifier, associated with server-side state

Browser

Cookie-based Session Management

29

Server

Request www.example.com/index.html

Response Set-Cookie: SID=12345

Request www.example.com/login.html
Cookie: SID=12345

Response

Request www.example.com/login.php
Cookie: SID=12345

Response

Cookie Jar

www.example.com
 SID=12345

Session Store

12345
 auth: false
 auth: true
 user: Bob

Modifying Cookie Behavior

30

§  Domain
§  Allows to broaden the applicability of the cookie
§  E.g. example.com applies cookie to *.example.com

§  Path
§  Associates a cookie with a specific path
§  E.g. /admin/ associates a cookie with /admin/*
§  Conflicts with the same-origin policy

§  HttpOnly
§  Restricts a cookie from being accessed

through JavaScript

http://user.example.com/attacker/

http://user.example.com/victim/

The SOP allows direct
access to the iframe,

exposing
document.cookie

Cookies and HTTPS deployments

31

§  Why the Secure flag matters
§  Cookies are associated with a domain, not an origin
§  No separation between cookies used on HTTP and HTTPS requests

§  Use separate cookies for HTTP and HTTPS
§  Associate different security levels to each cookie
§  Require HTTPS cookie to be present for sensitive operations

http://attacker.com

http://secure.example.com/

Outgoing HTTP request, with
any non-Secure cookies for

secure.example.com
attached

Backend Browser
Sharing Authentication in example.com

32

Secure, HttpOnly
cookie

for .example.com

Set alternate
session on the

exampleforum.com
domain

Interaction between Contexts
§  Related contexts

§  Documents can open popup windows, embed frames, etc.
§  Related cross-origin contexts are isolated by default
§  Limited interactions possible (navigation, messaging APIs, …)

§  Navigation
§  Navigate child frame to different resource
§  Navigate parent frame, reloading the entire document

§  Exposed APIs
§  Prime example: Web Messaging API, to support interaction

33

Web Messaging API
§  Messaging mechanism between contexts

§  Used for iframes, Web Workers, etc.
§  Event listener for receiving messages (opt-in mechanism)
§  API function for sending data (text, objects, etc.)

§  Security considerations
§  Specify origin of receiver to prevent leaking of content
§  Check origin of sender to prevent malicious use
§  Validate incoming content before using data to prevent injection attacks

34

Web Messaging API

35

var handler = function(event) {
 if(event.origin ==
 'http://www.example.com') {
 alert(event.data);
 }
}
window.addEventListener('message', handler, false);

RECEIVING MESSAGES

myframe.postMessage(data,'http://test.example.com');

SENDING MESSAGES

Example: a Client-side Storage Facility

36

https://storage.example.com/

Client-side
Storage API

Accessing local storage through Web
Messaging allows enforcing access

control and content inspection

Backend Browser
Interaction in example.com

37

Exchange
information using
Web Messaging
between iframes

Including Remote Content
§  Types of remote content

§  Images
§  JavaScript
§  CSS Styles
§  HTML documents

§  Including remote content
§  Identified by a URL
§  Fetched by the browser, and subsequently integrated
§  For active content (e.g. JavaScript), the included code is typically

executed in the context of the including page

38

§  SVG images
§  Audio/video
§  Plugin content (Flash, Java)
§  …

Mixed Content Problems

39

MIXED CONTENT INCLUSION
When an HTTPS-document
includes resources from non-
HTTP sources, potentially
compromising the integrity of
the document

Browser

Server

Attacker

Loaded HTTPS page which
requires additional resources

Solving Mixed Content Problems

40

§  Browsers blocking mixed content inclusion
§  IE 7 started with prompting users, other browsers are following
§  Active mixed content is typically blocked, passive content is allowed

§  Localize remote resources
§  Host remote resources locally within the application’s HTTPS domain

Integration of Remote Code
§  Two mechanisms to integrate code

§  Directly including JavaScript code using the <script> tag
§  Including code through an iframe, which hosts a separate document

§  Scripts
§  Straightforward integration in the context, without restrictions
§  Violates the security boundaries of a document

§  Iframes
§  Depending on the origin, the SOP restrictions apply
§  Preserves the security boundaries, but may hinder interaction

41

Script-based Content Integration
§  No security boundaries offered by browser

§  Combination with remote providers is potentially dangerous
§  Full access to the client-side context, including local resources

§  Existing techniques to constrain scripts
§  Localizing scripts à requires effort to update
§  Safe subsets of JavaScript à requires compatibility with existing scripts
§  Browser-based sandboxing à requires modifications to the browser
§  Server-side rewriting à requires control over the scripts
§  JavaScript-based sandboxing à upcoming technology

42

Iframe-based Content Integration
§  Iframes are controlled by the same-origin policy

§  Documents with different origins are isolated by the SOP
§  Well-suited to integrate separate components (e.g. advertisements)
§  More difficult to achieve dynamic interaction

§  HTML5 introduces the sandbox attribute
§  Gives coarse-grained control over capabilities in an iframe
§  Supports disabling scripts, plugins, forms, etc.
§  Supports a unique origin, alienating the iframe from any other origin
§  Well-suited for the integration of untrusted content

43

Best Practices for Integrating Code
§  If possible, isolate the content in an iframe

§  Use the sandbox attribute to enforce even more restrictions
§  Especially true for untrusted content (e.g. user-provided)

§  Only include code from trusted providers
§  Google often provides mirrors of popular libraries

§  Localize scripts for crucial applications
§  Keep scripts regularly up-to-date
§  Perform code reviews of the differences between versions

44

Backend Browser
Remote Code in example.com

45

Remote
Providers

script

iframe

Interacting with Remote Services
§  Ways to interact remotely

§  Triggered from HTML elements (image loads, form submissions, …)
§  Programmatically from JavaScript (XMLHttpRequest)
§  Using alternative protocols (Web Sockets, WebRTC, …)

§  Challenges with remote interaction
§  Difficult to determine which context a request originated from
§  Difficult to determine if a request was intended by the user

46

HTML-based Remote Interaction
§  Several types of requests can be triggered

§  GET requests from , <script>, …
§  POST requests with control over body content from <form>

§  Not affected by the Same-Origin Policy
§  GET and POST requests can be sent to other origin
§  Browser attaches available cookies to the request

§  Session cookies are implicit authentication!
§  Results in an attack known as Cross-Site Request Forgery

47

Cross-Site Request Forgery (CSRF)

Authenticated session

Browse to a compromised image gallery
(GET gallery.com/top10)

Page of images with an embedded CSRF attack

Execute action
(POST example.com/changeEmail, to=evil@gmail.com)

Email address changed in the background

Browser

Server
example.com

Continue browsing images

More images

Server
gallery.com

Mitigating Cross-Site Request Forgery
§  Mitigation techniques need to be explicitly present

§  Token-based approaches
§  Origin header

49

example.com

<form action=“submit.php”>
 <input type=“hidden” name=“token”
 value=“qasfj8j12adsjadu2223” />
 …
</form>

TOKEN-BASED APPROACH

Programmatic Remote Interaction
§  Sending requests with XMLHttpRequest

§  Supports different types of requests
§  Possibility to modify/manipulate “safe” headers
§  Response can be processed from within JavaScript

50

var url = “http://test.example.com/api.php”;
var req = new XMLHttpRequest();
req.open("GET", url, true);
req.onload = function(e) { … }
req.send();

SENDING REQUESTS

XMLHttpRequest and the SOP
§  Same-origin requests

§  No restrictions imposed on the use of XMLHttpRequest
§  Custom headers, use of credentials, etc.

§  Cross-origin requests
§  Required to enable remote interaction (e.g. APIs) without hacks
§  Enables capabilities not found in traditional HTML (e.g. PUT, DELETE)
§  Legacy server code does not expect such cross-origin requests

§  New security policy: Cross-Origin Resource Sharing

51

Cross-Origin Resource Sharing (CORS)
§  Enables client-side cross-origin requests

§  Opt-in mechanism to grant other origins access to certain resources
§  Allows the easy use of online APIs without hacks

§  Preventing additional attack vectors
§  Configurable security policy to determine who can access response
§  Preflight request to approve “dangerous” requests up front
§  Attacker capabilities with CORS largely correspond to HTML elements

§  Already used beyond XMLHttpRequest
§  Regulating access to cross-origin HTML elements (canvas, …)

52

Cross-Origin Resource Sharing (CORS)

53

var url = “http://api.provider.com/api.php”;
var req = new XMLHttpRequest();
req.open("GET", url, true);
xhr.withCredentials = true;
req.onload = function(e) { … }
req.send();

SENDING CORS REQUESTS

Access-Control-Allow-Origin: http://www.example.com
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: APIVersion

CORS RESPONSE HEADERS

Sharing an API with CORS

54

-  Allow wildcard origin

Access-Control-Allow-Origin: *

PUBLIC CORS API (/API/PUBLIC/)

-  Check origin of request
-  Check used method
-  Perform traditional access control
-  Execute request
-  Add appropriate response headers

CORS PROCESSING CHECKLIST

-  Allow the customer area origin
-  Allow the use of credentials
-  Expose the X-Version header

Access-Control-Allow-Origin: https://private.example.com
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: X-Version

RESTRICTED CORS API (/API/ACCOUNTS/)

Backend Browser
Remote Interaction in example.com

55

Remote
Providers

script

iframe

Wrap Up

56

Take-home Message
§  The origin is a core concept in web security

§  Compartmentalize where possible

§  Treat incoming messages as potentially untrustworthy

§  Consider the trust relationship with external parties

57

Further Reading

58

The Web’s Security Model
Philippe De Ryck – iMinds-DistriNet, KU Leuven
philippe.deryck@cs.kuleuven.be

